UNCLASSIFIED

ap 213 883

Reproduced
by the

ARMED SERVICES TECHNICAL tNFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

%
X2

UNCLASSIFIED




NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
vwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



-— —-

——

213 883

62-189

THE NATURE OF THE MOTION OF A GYROSCOPE IN THE
PRESENCE OF DISPLACED CENTER OF GRAVITY AND FRICTION

By
S. I. Makarikhin



FID-TT- 62-189/1+2+4

UNEDITED ROUGH DRAFT TRANSLATION

THE NATURE OF THE MOTION OF A GYROSCOPE IN THE
PRESENCE OF DISPLACED CENTER OF GRAVITY AND FRICTION

By S. I, Makarikhin

English Pages: 16

Source: Izvestiya Vysshikh Uchebnykh Zavedeniy,
Priborostroyeniye, Vol, IV, No. 6,
(1961) , Pages 97-108

SC-1040
ASTAR 2736
SOV/146-61=4-6

THIS TRANSLATION IS A RENODITION OF THE ORIGI-
NAL POREION TEXT WMITHOUT ANY ANALYTICAL OR
EOITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY:

ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE
AND DO NOT NECESSARILY REPLECT THE POSITION TRANSLATION SERVICES BRANCH
OR OPINION OF THE PORERION TECHNOLOOY DI FOREION TERCHNOLOGY DIVISION

VISION. wP EA Y

FTD-T7-_62-189/1+2+k Date 28 v 1962

F




THE NATURE OF THE MOTION OF A GYROSCOPE IN THE
PRESENCE OF DISPLACED CENTER OF GRAVITY AND FRICTION#*

S. I. Makarikhin

Leningrad Institute of Aviation Instrument Manufacture

A study of the effect of displaced center of
gravity in a gyroscopic system in the presence
of friction and correction momenta upon the
motion of a gyroscope with a horizontal external
axis, The problem is solved using the concept
of the "mapping point." The effects of dis-
placed center of gravity, correctlion and fluid
friction on the motion of a gyroscope with a
constant correction characteristic when the
cantilever 1s fixed are examined.

An examination 1s made of the effect of displaced center of
gravity in a gyroscopic system in the presence of friction and correc-
tion momenta on the motion of a gyroscope with a horizontal external
axis, An accurate solution to the problem on the effect of forces
of dry friction on the behavior of a gyroscope mounted on a fixed
cantilever was obtained by Ye., L, Nikolai [1, 2], This problem was

¥ Reported at the III Joint Conference of the Institute of
Higher Learning on Gyroscopic Technology. The report was called
"The Motion of a Gyrovertical in the Presence of Friction and Gaps
in the Support Bearings."
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solved using the notion of the "mapping point." D, M, Klimov, using
this concept, examined the problem on the behavior of a gyroscope on
a fixed cantilever under the assumption that friction momenta in the
support axes were proportional to the dynamic reactions [*..

N. V. Butenin examined this problem in the presence of fluld as
well as dry friction by a more general method; in addition, he solved
some new problems for a gyroscope with a vertical external axis [4,
51.

In the present work the problem 1s solved for a gyroscope with
a horizontal external axls by using a "mapping point."

An examination 1s made of the effect of displaced center of
gravity, correction and fluid friction on the motion of a gyroscope
with a constant correction characteristic when the cantllever is
fixed.

The Effect of Dlsplaced Center of Gravity, Correction and
Fluld Friction on the Motion of a Gyroscope

The equations of motion of a free gyroscope on a fixed canti-
lever have the form [6]:

’.5.+l§cosG.W=M. 1. (1)
I.W —1Qcosd-b=M, |
Let HB and Mgy, the momenta relative to the axes of the internal and
external frames, respectively, be determined by the displacements of
the center of gravity of a gyroscoplc system and by its weight [7],
by the presence of fluid driction in the support axes, and also by

correction momenta with a constant correction characteristic [8].
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Hence, let us represent the right-hand members of Eqs. (1) in the form

My =My +M,+M,, }.

Mc=M¢3+Mcr+M0x_ (2)
where
M,s=(a, + by) cosd . G.cos ¥ +
+[a—(a, - b,)sind) G, cos ¥-sind }:
Mey=(asin ¥ 4 b)G, (3)

a, is the radial displacement on the main axis;
bp the radial displacement on the internal axis;
a the axlial displacement along the main axis;

b the axlal displacement along the interal axis;
Gg the weight of the gyroscope;

Y and ¢ the angles of turning of the external and internal frames,
respectively;

MBT = = o$ the moment of fluld friction relative to the axis of the
internal frame;

Mop = = pY the moment of fluld friction relative to the axlis of the
external frame;

a and B the coefficients of fluid friction;
Mpgx = — kp 8ign ¥ and Mgy = k, sign $ the correction momenta;
kB and kc the coefficlents of the correction momenta.

Assuming that the angles ¥ and $ are small and at § = 0 the
external and internal frames are perpendicular, we may write

M, =aGO0+B—ab —k,sign¥
M. =a0¥ 4 A —~B¥ 4 k. signbd | (%)

where G 1s the weight of the gyroascope rotor;

B =ay+ bp(G + Opy) ;
GBK the weight of the internal cardan ring of the support;

A=1dG+ Ggx).
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Substituting the found values from (4) of the momenta My and M,
into Eq. (1), we may write

1,84 19¥ — aG 0= ab — &, sign¥ + B
IY — 196 — 60 W= —B¥ -k sign84-A |

(5)

Using the concept of the mapping point, in order to study
System (5) in general form, it follows to operate in four-éimensional
space, which represents considerable difficulties and deprives one of
the clearness of a geometrical plcture of the motion of the mapping
point, therefore, let us examine System (5) without inertial terms

19 —aG 0= — af— k,sign T + B }

1Q% 4 a0 ¥ =pY — ksignd — A (6)

Let us transform (6) to the form:

i %"‘:n:'m—,.[l 2B+ aA-aksignd—/Qk,sign¥ +ao(m+¢ur)]
=T ey [$B~19A—Qksignd — Bk, sing Y~aG(/Q¥ —p0)] ' 7)

Let kg > B and ky < A. Let us examine the plane $¥(the coordinate
plane) of System (6). The coordinate axes divide the plane $¥ into
four quadrants, in each of which Eqs. (7) have different forms, From
(7) 1t follows that.the differential equation of the phase trajectories
is

(8)

The singular points of Eq. (8) on the plane $0Y will be the
same points at which the following conditions are fulfilled simultan-

eously:




aGpd —aGl/QW 4+-BB—/QA — IQk,signd—pA,sign T =0 .
aOlQO+aGaW’+IQB+aA+akaignO—IQk sign¥=0 (9)

These points (singular points) for the initial system correspond to
equilibrium states. The coordinates of the singular points are found
from the expressions

o.-__'-_"-_'_'E.g_:E_
‘I,‘;__ u',np_:ofA " (10)

where K = 1, 2, 3, 4 1s the number of the corresponding quadrant.
For the $0Y coordinate system

$1 >0, ¥3 > 0; 42> 0; ¥, < 0; 83 < 0; ¥3 < 03 84 < 0, ¥e > O,

From (10) we find
$1 > 05 42 < 05 83 < 05 84> O,
¥y < 0; ¥ 0; ¥3< 03 ¥4 < O,

Hence it follows that beyond the coordinate axes Eq. (8) has only
one singular point in third quadrant, which corresponds to the
equilibrium position of the gyroscope frames after their deflection
at angles equal to respectively

0.-_--;-"—'5-.- )
L R — A I . (11)

The nature of the singular point in this case 1s determined by the
Eqs. [9, 10]

S* — (ng + ng)8S + A% + nynp = 0, (12)

where




aQs S 70
h= gEy O "a=';r$.2(7p'a—)r. -1=—.f;'a_7’7e°—,r. (13)

Here p = = (ny + ng) < 0 and q = nyng + A2 > 0, therefore, the roots
. of Eq. (12) Sy and Sp will be complex conjugates; at R,[S] > O the
singular point 1s an unstable focal point,

Integrating Eq. (8), we find sets of integral curves, Let us
first of all substitute the variables in Eq. (8)

=TV, (1%)
n=8—9

Equation (8) takes the form

dn, _ =&+
aF = T (15)
After integration we obtain -

(16)

24 +AE
EOIPPRSOIIR ¢ L ki e - A

where e
4, =—hy

; h:: ‘n‘—l'"’. H

C is the arbitrary constant of integration.
In the old variables ¥ and § we shall have:

(¥ —%) + 2R(F —W,).(8—0,) (8~ 0,0 ==

, (v v,‘)é|_=m

The set of curves of (17) represent a spiral issuing from the

(17)

corresponding point with coordinates ¥ = ¥, $ = $, in each quadrant,

.




In order to Judge the behavior of the angles of deflection
Y and $ as a function of the initial conditions, integral curves may
be constructed on the plane ¥4 and the motion of the mapping point
traced, Let us construct a set of integral curves of (17). For the
third quadrant the curves will have the form:

(o S5 o+ 2 5 -

. ' h+B kc—A
‘="_:;!;_P. arctan (°+ -l-:—*’;d.(: 'La‘) (18)

Let us find the integral curve in the third quadrant which passes

through the point w—!.‘;r‘ 8=0 . For this curve

(Q%L); "-‘_1;%! retan —ce %T'E. " (19)

and therefore, the constant of integration

e (t22) kiad (20)

Substituting the value of (20) into Expression (18), we find the
equation of the curve sought after in the form

e -safesat{e- s e ]
| B o s e - -

& — :
=23 (278 e -t (21)
Let us determine under what conditions this integral cugve will be
+

tangent to the $-axis at the polnt ¥ = 0; ¢ = — —“— . This
condition 18

[aa=npirys” T

-T=




that 1is

-arcten it

(— kAP =28 (h+B)le
' (22)
Let us note that in the absence of fluid friction this condition
would have the form

g 48

Expression (22) may be rewritten as

-_5_ arctanu_ﬁ_g

A=k, — 4,8 iB)e. T (23)

Obviously, if

| -
- arctantnl

A<k —48(k+p)e ° '
' (24)

(A 18 the constant component of the momentum about the external axis,

which 1s dependent upon displacement of the center of gravity), then

the curve of (21) does not intersect the $-axis; if

o ., =l arctan®=
A>A—48(k+p)e . T
then the curve of (21) will intersect the #-axis,
The equation of the integral curve passing through the point

+ B
Y¥=0, § = = -k—gr— (in the third quadrant) is found as before:

' - _s+f arctan-
()= W T (es)
Hence the value of the arbitrary constant
.= -—
- [aA_a\d arctan :
(o '(A. a.) "EE ‘ri'!’.

(26)
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and the equation of the curve sought after will have the form
(vt (7= 42 o+ )+ o+ 22

arctan *7f —arctan (. k.+B)+ QF(W——‘:G-A-)

A—A v_re—A
ek | T (27)
The condition under which this curve will be tangent to the Y-axis at

the point ¥= %, 34 = 0 (tangency on the strength of Eq. (8)) has

the form of (23). This means that when condition (24) is fulfilled,

the curve of (27) will intersect the Y-axis; when condition (25) 1is

fulfilled, the curve (27)will not intersect the ¥-axis. In the plane

¥4 there will be on the ¥ and ¢ axes, segments of the junction of

the motion of the mapping point along the integral curves, On the
e+ A

$-axis this section is from ——_— to "‘;&A . On the $-axis the

section 1s from —Ei® to __E%"_}-. When the mapping point hits the

section of the Junction of motion on the Y-axis, the equations of

motion (7) will be
!f=n,V+MBA—'IQm,+ﬁ1"W

(we assume that Mps + .-.1—‘1;"']),>10_.)

$ = —RW—%+MM"F“Q=°' (28)

where

- ""mw Ny =¥

'-=ﬁm =T - k<M, <[ (29)

From Eq. (28) it follows that the mapping point, having hit the
Y-axis in the section in question, will move along the Y-axis in the

direction of increasing ¥ to the point Y = "_‘;i‘ , § =0, at which

=Qu




point it leaves the Y-axis,

" \

Fig. 1.

When the mapping point strikes a similar section of the $-axis,
Eq. (7) will be

- 1B My __
W_X0+Mu;tam, -— m—-o .

6=n,o+%+lﬂm,—;;l+ﬂ(‘,!§;.<o ' ( 30)
where
—Re . — 80}
me=gFuep: M= | (31)
—ku<Mu<ki '




Therefore, motion along this section will go to the side of
decreasing ¢ to a point with coordinates $§ = —-':" , ¥=0, after
which the mapping point will leave the $-axis. The qualitative
picture of the plane ¥4 for Case (24) is shown in Fig. la and for
Case (25) in Fig. 1b, Figure 2 shows the motion of the mapping point
under various starting conditions,

Fig. 2.

From an examination of Fig. 2 it follows that at sufficilently
large initial deflections, the motion of the system will be damped
and, conversely, at sufficiently small initial deflections in a
certain vicinity near a singular point, the motion of the point will
be rising. Starting from this, conclusions may be made about the
essentialness of a closed phase trajectory, with respect to which
all remaining phase trajectories are colled. This closed phase
trajectory corresponds to the periodic motion of the system, wherein
the parameters of this motion are not functions of the initial

«ll~
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conditions and are determined by the parameters of the dynamic
system, It is obvious that this is a stable limited cycle, corre-
sponding to selfoscillations.

Let us examine the physical pilcture of the motion of the axis of
the gyroscope at zero starting conditions, i.e,, assuming

8];~0= W)= =0. (32)

In this case the mapping point will at first move alrmng the $-axis
to the point Wm0,6=— !_-‘+5 . This means that the external frame will.

be fixed, while the internal frame will move according to the law

$ = _ytu,%{mu,—n (e ﬂiafra;r,‘_ ,-)_ (33)

The motion time of the interal frame when the external frame is
fixed is found from the condition

kg + B
$ == B,
1.e.,
Sli—f) g2, (>
hence
t = winfi-t32s), (35)
where

- )

Further, the mapping point will move along the spiral of (21). The
deflection angles of the frames will vary according to the law found
by integrating Expressions (7). These expressions are more conven-




iently reduced to the form

b=n0 —\W+M_—IQm,sign®—pm,sign¥ }

W’:k&-{-nﬂl"-l—”n-l-amolgnb—lﬂnulgnlf ' (36)
Thus at zero initial conditions
0_-;;[1+¢“n (costV—n'{ V=I-_-,—sint]/u - )]
V= [ 0+ A cone ViR + A r®- L (37)
-n.aou-tV“‘?_»,-,+M.-+mg.+pm.] T
where : | L
L= (@ =mlQ)me—(mp+ 9 my—m +»g,

h=-2%M e my + M,

Thus, at any initlal values of ¢ and ¥ the motion of the mapping
point, and for the case under examination the motion of the vertex
of the gyroscope in the plane 0¥$, reduces to the setting up of
selfoscillations,

At kg > B and kg > A, from Expression (10) 1t follows that Eq.
(7) has no singular points outside of the coordinate axes. The
intersection of the sections of the Junction of motions along the
integral curves will be at the origin of the coordinates 0¥$, At
any initial values of ¥ and 4 the mapping point will arrive at some
section of motion Junction.

Figure 3 shows the position of integral curves on the plane ¥Y$
for the case in question. '

Taking the inertia of the support frames into account, the
equations of motion of a free gyroscope set up on the ground have
the form of (T)

13w




LY+ 100 4 Q,sing) =M, }

1.:— 1Q (8 — 2, co89- V) =M, (38)

Substituting the values of the momenta My and Mg into Egs. (38), we
obtain

LY 419 —aG8+a b=—1QQ,sin g — k,sign T+ ]

1¢ — 108 4 (799, cos 9 — a0) ¥ + B =k sign 8- A (39)
Without inertial terms, Eqs. (39) have the form
,IQW—aGO{ad:"-—k.sig'nW }
1984 (a0), T — pU =—hsignd—A |’ ( #0)
where
B, =p—/QQ,sin¢ } (41)
(aG),=0aG — 12Q,co8 ¢

Formally, Eqs. (40) have the form of Eqs. (6). Carrying out all
operations successively with Egs, (40) done earlier for the coordl-
nates of the singular points, we obtain equations, similar to (10),
in the form

R
(42)

Let us note that the case of aG=/QQicos¢ 1s not examined here.
Here, taking the conditions aG > I{ifls cos §; k'.B > B —=1I0Rs 81n ¢;
kc < A, we arrive at the previous case with substitution in Expres-
sions (11 to 37) of By and (a@)y, determined by Formulas (41) far
B and aG. Naturally, the zones of motion junction in Figs. la and 1b

FID-TT-62-189/1+2+4 i



and 2 will have boundaries at which B; and (a@),; act instead of B
and aG., Here, as in the case when the gyroscope is mounted on a
fixed cantilever at any initial values of $ and ¥ the motion of the
mapping point as well as that of the vertex of the gyroscope 1n the
plane reduces to the setting up of selfoscillations,

- mg. 3.

As is known [11, 12, 13], equations of the form of (5) written
without correction components kp sign ¥ and kc sign ¢ represent an
unstable system. In fact, in view of the fact that the center of
gravity of our gyroscopic system 1s above its suppart point (g_is
negative), stability may be obtained only artificlally, for example,
by introducing correction momenta, as was done above,

Obviously, without correction momenta, selfoscillation conditions
would not set in and this dynamic system would be unstable,

FTD-TT-62-189/1+2+4 -15-
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